Convex relaxation methods for graphical models: Lagrangian and maximum entropy approaches
نویسنده
چکیده
Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerful and flexible approach to many problems in science and engineering, but also present serious challenges owing to the intractability of optimal inference and estimation over general graphs. In this thesis, we consider convex optimization methods to address two central problems that commonly arise for graphical models. First, we consider the problem of determining the most probable configuration—also known as the maximum a posteriori (MAP) estimate—of all variables in a graphical model, conditioned on (possibly noisy) measurements of some variables. This general problem is intractable, so we consider a Lagrangian relaxation (LR) approach to obtain a tractable dual problem. This involves using the Lagrangian decomposition technique to break up an intractable graph into tractable subgraphs, such as small “blocks” of nodes, embedded trees or thin subgraphs. We develop a distributed, iterative algorithm that minimizes the Lagrangian dual function by block coordinate descent. This results in an iterative marginal-matching procedure that enforces consistency among the subgraphs using an adaptation of the well-known iterative scaling algorithm. This approach is developed both for discrete variable and Gaussian graphical models. In discrete models, we also introduce a deterministic annealing procedure, which introduces a temperature parameter to define a smoothed dual function and then gradually reduces the temperature to recover the (non-differentiable) Lagrangian dual. When strong duality holds, we recover the optimal MAP estimate. We show that this occurs for a broad class of “convex decomposable” Gaussian graphical models, which generalizes the “pairwise normalizable” condition known to be important for iterative estimation in Gaussian models. In certain “frustrated” discrete models a duality gap can occur using simple versions of our approach. We consider methods that adaptively enhance the dual formulation, by including more complex subgraphs, so as to reduce the duality gap. In many cases we are able to eliminate the duality gap and obtain the optimal MAP estimate in a tractable manner. We also propose a heuristic method to obtain approximate solutions in cases where there is a duality gap.
منابع مشابه
Learning Markov Structure by Maximum Entropy Relaxation
We propose a new approach for learning a sparse graphical model approximation to a specified multivariate probability distribution (such as the empirical distribution of sample data). The selection of sparse graph structure arises naturally in our approach through solution of a convex optimization problem, which differentiates our method from standard combinatorial approaches. We seek the maxim...
متن کاملLinear Approximation to ADMM for MAP inference
Maximum a posteriori (MAP) inference is one of the fundamental inference tasks in graphical models. MAP inference is in general NP-hard, making approximate methods of interest for many problems. One successful class of approximate inference algorithms is based on linear programming (LP) relaxations. The augmented Lagrangian method can be used to overcome a lack of strict convexity in LP relaxat...
متن کاملModeling and Estimation in Gaussian Graphical Models: Maximum-Entropy Methods and Walk-Sum Analysis
Graphical models provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found applications in a variety of fields such as computer vision, image processing, and distributed sensor networks. In this thesis we study two central signal processing problems involving Gaussian graphical models, namely modeling and estimation. The mo...
متن کاملMaximizing submodular functions using probabilistic graphical models
We consider the problem of maximizing submodular functions; while this problem is known to be NP-hard, several numerically efficient local search techniques with approximation guarantees are available. In this paper, we propose a novel convex relaxation which is based on the relationship between submodular functions, entropies and probabilistic graphical models. In a graphical model, the entrop...
متن کاملAccelerated dual decomposition for MAP inference
Approximate MAP inference in graphical models is an important and challenging problem for many domains including computer vision, computational biology and natural language understanding. Current state-of-theart approaches employ convex relaxations of these problems as surrogate objectives, but only provide weak running time guarantees. In this paper, we develop an approximate inference algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008